skip to main content


Search for: All records

Creators/Authors contains: "Jasuja, Haneesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stabler, Cherie L. (Ed.)

    The unavailability of reliable models for studying breast cancer bone metastasis is the major challenge associated with poor prognosis in advanced-stage breast cancer patients. Breast cancer cells tend to preferentially disseminate to bone and colonize within the remodeling bone to cause bone metastasis. To improve the outcome of patients with breast cancer bone metastasis, we have previously developed a 3D in vitro breast cancer bone metastasis model using human mesenchymal stem cells (hMSCs) and primary breast cancer cell lines (MCF-7 and MDAMB231), recapitulating late-stage of breast cancer metastasis to bone. In the present study, we have tested our model using hMSCs and patient-derived breast cancer cell lines (NT013 and NT023) exhibiting different characteristics. We investigated the effect of breast cancer metastasis on bone growth using this 3D in vitro model and compared our results with previous studies. The results showed that NT013 and NT023 cells exhibiting hormone-positive and triple-negative characteristics underwent mesenchymal to epithelial transition (MET) and formed tumors in the presence of bone microenvironment, in line with our previous results with MCF-7 and MDAMB231 cell lines. In addition, the results showed upregulation of Wnt-related genes in hMSCs, cultured in the presence of excessive ET-1 cytokine released by NT013 cells, while downregulation of Wnt-related genes in the presence of excessive DKK-1, released by NT023 cells, leading to stimulation and abrogation of the osteogenic pathway, respectively, ultimately mimicking different types of bone lesions in breast cancer patients.

     
    more » « less
  2. Abstract

    Prostate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration. We have designed a novel bioreactor system to demonstrate the impact of interstitial fluid flow on the migration of prostate cancer cells to the bone during extravasation. First, we demonstrated that a high flow rate induces apoptosis in PC3 cells via TGF-β1 mediated signaling; thus, physiological flow rate conditions are optimum for cell growth. Next, to understand the role of interstitial fluid flow in prostate cancer migration, we evaluated the migration rate of cells under static and dynamic conditions in the presence or absence of bone. We report that CXCR4 levels were not significantly changed under static and dynamic conditions, indicating that CXCR4 activation in PC3 cells is not influenced by flow conditions but by the bone, where CXCR4 levels were upregulated. The bone-upregulated CXCR4 levels led to increased MMP-9 levels resulting in a high migration rate in the presence of bone. In addition, upregulated levels ofαvβ3integrins under fluid flow conditions contributed to an overall increase in the migration rate of PC3 cells. Overall, this study demonstrates the potential role of interstitial fluid flow in prostate cancer invasion. Understanding the critical role of interstitial fluid flow in promoting prostate cancer cell progression will enhance current therapies for advanced-stage prostate cancer and provide improved treatment options for patients.

     
    more » « less
  3. Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer. 
    more » « less
  4. Our study aims to identify the role of fluid flow in the growth of human bone cancer cells during metastasis. In our experiments, the cancer cells are seeded on the surface of cylindrical scaffolds in a bioreactor. The flow is laminar flow, which mimics the physiological conditions of the human body. A full-scale 3D high-resolution computational mesh of scaffold was created based on the physical scaffold's Micro-CT scans using open-source imaging software Slicer3D and Meshmixer. To investigate the influences of the flow on the seeded cells, we performed Computational Fluid Dynamics (CFD) simulations with the immersed boundary method (Gilmanov, Le, Sotiropoulos, JCP 300, 1, 2015). The computational domain was generated using the commercial software Gridgen. Our results show that the fluid flow velocity is highly dependent on the shape and pore sizes. In addition, the magnitude of the velocity on the surface where the cells are seeded is in between [0-0.05] μm/sallowing the cells to grow without being detached from the surface of the scaffold. Our future work will focus on (i) investigating the role of the shear stress on the distribution and orientation of the cancer cells. (ii) Simulating multiple scaffolds within the bioreactor to further quantify the impact of the gap on the flow velocity and shear. 
    more » « less
  5. Abstract

    Metastatic cancer in bones is incurable, which causes significant mobility and mortality to the patients. In this work, we investigate the role of interstitial fluid flow on cancer cells' growth within the interconnected pores of human bone. In-vitro experiments were carried out in a bio-reactor which includes bone-like scaffold specimens. A pump is used to maintain a laminar flow condition inside the bioreactor to resemble fluid flow in bones. The scaffold specimens are harvested after 23 days in the bioreactor. The scaffold specimen is scanned with Micro-CT under the resolution of 70 micrometers. We created a full-scale 3D computational model of the scaffold based on the micro-CT data using the open-source software Seg3D and Meshmixer. Based on the geometrical models, we generated the computational grids using the commercial software Gridgen. We performed Computational Fluid Dynamics (CFD) simulations with the immersed boundary method (Gilmanov, Le, Sotiropoulos, JCP 300, 1, 2015) to investigate the flow patterns inside the pores of the scaffolds. The results reveal a non-uniform flow distribution in the vicinity of the scaffold. The flow velocity and the shear stress distributions inside the scaffold are shown to be convoluted and very sensitive to the pore sizes. Our future work will further quantify these distributions and correlate them to cancer cells' growth observed in the experiments.

     
    more » « less
  6. null (Ed.)